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Abstract 

The unusual behaviour of blood as a non-Newtonian fluid, it is still 

difficult to characterise the complex dynamics of ocular blood flow 

(OBF), which are essential for comprehending a wide variety of eye-

related illnesses. In this study's two-phase ocular blood flow 

analysis, a Non-Newtonian Power Law model is used to mimic the 

rheological features and flow behaviour of blood within the ocular 

vasculature. This results in a more accurate representation of the 

flow behaviour. The cellular and plasma components of blood are 

included into the model in order to provide a more realistic 

representation of the dynamics that occur in the choroidal and retinal 

circulation in real life. Several different vascular regions were 

computationally simulated while being subjected to a variety of 

physiological conditions. The results demonstrate how non-

Newtonian features of blood influence haemodynamic variables 

such as pressure gradients, velocity profiles, and shear stress. 

Keywords: Ocular Blood Flow (OBF), Power Law Model, Non-
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Introduction 

The human eye needs precise blood flow management for 

optimum health and function due to its complex vascular anatomy. 

Eye diseases include glaucoma, diabetic retinopathy, and retinal 

vein blockage are associated to OBF obstructions. Intraocular blood 

flow dynamics must be understood to improve diagnostic and 

therapeutic approaches. Due to Newtonian fluid dynamics, standard 

blood flow models oversimplify blood's complex rheology, 

especially in microcirculatory systems like the choroid and retina. 

Due to its non-Newtonian nature, blood viscosity fluctuates with 

shear rate, haematocrit, and vessel diameter. Blood shear-thins from 

large veins to capillaries, affecting haemodynamic parameters as 

velocity, pressure, and shear stress (Benjamin et al. 2018).  

Therefore, these non-Newtonian properties must be included 

for realistic ocular blood flow models, particularly for strongly 
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perfused tissues. Blood flow is often explained using the non-

Newtonian Power Law. This model accounts for shear-thinning to 

better replicate blood flow via the complex ocular vascular network. 

The Power Law paradigm is significant, although it has been used 

to ocular blood flow sparingly. Blood is two-phase, including 

plasma and cellular components. More research is required. This 

studuses a two-phase model based on the Non-Newtonian Power 

Law to study intraocular blood flow dynamics. 

This research aims to determine how non-Newtonian blood 

behaviour impacts retinal and choroidal blood flow. We use 

computer models to study how shear rates and haematocrit levels 

affect haemodynamic variables such shear stress, velocity profiles, 

and pressure gradients (Hansson et al. 2006). This work might 

improve diagnostics and targeted treatments for vascular anomaly-

related eye illnesses by improving ocular blood flow information.  

The complicated ocular vasculature's blood flow depends on 

blood rheology and vessel shape. Under normal conditions, the 

retina and choroid tightly regulate blood flow to meet ocular tissues' 

metabolic demands. Ischaemia, which may cause many eye 

illnesses, can develop from reduced blood flow when these 

mechanisms fail. Thus, early identification and blood flow 

normalisation therapies need ocular haemodynamics research. 

Traditional models of ocular blood flow cannot accurately reflect 

blood's complicated rheology, especially at low shear rates in the 

eye's microcirculation (Ross 1999). Blood is non-Newtonian when 

red blood cell deformability and plasma viscosity in microscopic 

arteries regulate flow. The Power Law model, a common 

framework for characterising non-Newtonian fluids, contains the 

link between shear stress and shear rate to better describe this shear-

thinning phenomenon. 

Blood is a non-Newtonian two-phase fluid system having 

plasma and cellular components, mostly red blood cells. Complex 

blood flow dynamics are made worse by their interaction. Two-

phase flow analysis may be added to the non-Newtonian Power Law 

model to better describe retinal and choroidal blood flow. This 

technique considers plasma and cell impacts to better understand 

ocular blood flow. Many studies have explored ocular blood flow 

using single-phase or Newtonian approximations, but few have 

employed complex models. Lack of complete computer models that 

encompass the eye's sophisticated vascular architecture and blood's 

non-Newtonian rheology makes ocular haemodynamics 

understudied. This study uses a two-phase non-Newtonian Power 

Law model to simulate choroidal and retinal capillary flow to cover 

this knowledge gap. 
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This study should have major therapeutic implications. By 

making more accurate predictions of ocular blood flow, our model 

may help diagnose vascular abnormalities early and improve our 

understanding of how blood flow variations affect eye diseases 

(McLaren et al. 2011). Pharmacological medications and 

vasodilators that improve ocular blood flow may also be evaluated 

using it. This study aims to elucidate ocular haemodynamics to 

improve eye disease therapy for individual patients. Refinement of 

the model has implications for systemic illnesses with ocular 

symptoms research and therapeutic applications in understanding 

ocular blood flow. Hypertension, diabetes, and cardiovascular 

illness may impact ocular circulation, causing secondary ocular 

issues.  

More accurate ocular blood flow models may assist monitor 

systemic illnesses' impact on retinal and choroidal blood dynamics, 

enabling earlier intervention and more personalised therapy. 

Medical imaging has advanced to provide detailed visualisation and 

quantification of ocular blood flow using doppler ultrasonography, 

OCT, and CFD. Combining these technologies with computational 

models provides a once- in-a-lifetime opportunity to evaluate 

models with real data, which may increase accuracy andclinical 

applicability. This combination of experimental imaging and 

computational studies could provide new avenues for 

comprehending complicated ocular haemodynamics. Vascular 

geometry is difficult to simulate in ocular blood flow (Gerszten and 

Tager 2012). The choroid and retina have complex microvascular 

architecture with varied vessel diameters, branching patterns, and 

curvature.  

Due to these qualities and blood flow's intrinsic dynamic 

nature, realistic simulations need complicated models. This study's 

two-phase non-Newtonian Power Law model depicts the vascular 

network and blood rheology to account for these details. This 

technique considers vessel width, branching, and network design to 

better understand ocular vascular flow parameters. The eye needs 

nourishment and oxygen to operate properly, as do other tissues. 

Ocular blood flow abnormalities induce hypoxia, which may lead 

to retinal illnesses such diabetic retinopathy and macular 

degeneration. The two-phase model will show how blood flow 

affects nutrient delivery and tissue oxygenation by modelling shear 

stress and velocity profiles. These results may guide therapy 

methods to increase blood flow and tissue function in damaged 

regions. 

OBJECTIVES 

1. To understand the behaviour of blood flow when wall 

deformation is considered. 
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2. To study how ocular blood flow is affected by the non-

Newtonian behaviour of blood 

Materials and methods 

 

Processing and Acquiring Data 

CT data from a 46-year-old male patient with suspected CAD 

was used to construct 3D left coronary artery (LCA) models. Patient CT 

scans were clear after following a regimen. With 100 kVp tube voltage, 

300–650 mAs current span, 0.6 mm reorganisation period, and 1.4 pitch, 

the beam was collimated. The images were axially recreated using 0.6 

mm slice thickness and 0.75 mm accumulation distance. With almost 

400 slices, the images were produced in all sagittal, coronal, and axial 

orientations. A realistic 3D model of the left coronary artery was 

produced using DICOM data, CT volume data, and image processing 

tools. Previous studies used MIMICS. Identifying stenoses was the main 

goal of this study. MIMICS 18 was used to get patient CT scans (Bongo 

and Peng 2011). To replicate the left coronary artery model, thresholds 

between 84 and 630 HU were found. After positioning the left coronary 

artery, segmentation was done. 

Pulsatile inlets were added to the model inlet. The model's entry 

includes the pulsatile intake velocity, and the left coronary artery's 

physiological flow was chosen from published literature. LCA model 

exit points have a "outflow" boundary. The flow was complete before 

stenosis because there were six diameters between the input diameter of 

3.186 mm and the left main (LM) length of 19.11 mm in the calculations 

(Vlachopoulos et al 2011). LCA model numerical calculations lasted 

750 iterations. A constant time-step of 0.005 s was chosen with 20 

iterations. Total calculation time: 3.75 seconds. The convergence of 

momentum and continuity was treated as 10−4. After the third 

simulation cycle, the article's results were released. 
  
Material Properties 
 

One must identify the artery wall's structure to build up FSI 

simulations. Additionally, we employ blood fluid properties, which 

include plasma and RBCs, from earlier study. Table 1 details them. 

 
Table 1. Characteristics of red blood cells, plasma, and the construction of 

the arterial wall 
 

Parameters Value 

Primary Phase  

Density of Plasma (𝜌p) 1003 kg/m3 

Viscosity 0.0013 kg/m-s 

Secondary Phase  

RBC (Red Blood Cells) Density (𝜌RBC) 1096 kg/m3 

Granular diameter of RBC 8 µm 
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Creation of 3D Simulation Models for Fluid-Solid Interaction and 

Computational Fluid Dynamics (CFD) 
 

Program for maths analysis the reconstructed 3D stereo lithographic 

model was loaded into ANSYS 2020R1. ANSYS was used to build the 

FSI model, which included fluid domains for blood and solid domains 

for the wall (Polanczyk et al. 2018). Following the study and the blood 

domain volume model, we created the 0.5 mm elastic wall. Table 2 lists 

the disclosed LCA geometrical aspects' sizes. 

Table 2. Specifics of the geometry of the left coronary artery (LCA) 

model in the actual patient 
 

Parameters Dimensions 

Length of Left Main (LM) 9.91 mm 

Length of left circumflex (LCx) 66.27 mm 

Length of Left anterior descending (LAD) 82.29 mm 

Vessel wall thickness 0.5 mm 

Diameter of LM along Inlet 3.186 mm 

Diameter of LAD along Outlet 2.168 mm 

Diameter of LCx along Outlet 2.823 mm 

Area of inlet (LM) 7.9715 mm2 

Angulation between LCx and LAD 78.48° 

 

Computational Fluid Dynamics (CFD) Model 

RBC volume fraction 0.45 

Coefficient of Restitution, (e) 0.99999 

Coefficient of Wall restitution (ew) 0.9999 

Coefficient of Specularity (φ) 0.60 

packing limit of RBC, (εs)max 0.70 

Viscosity model Carreau model 

Time Constant (λ) [s], 3.313 

Index of Power-Law (n) 0.3568 

Zero shear viscosity (µ0) 0.056 (kg/m-s) 

Infinite shear viscosity (µ͚) 0.00345 (kg/m-s) 

Structural Properties  

Artery Wall Density(ρs) 1300 kg/m3 

Wall thickness 0.5 mm 

Young’s Modulus 1.08 (MPa) 

Poisson’s ration(υ) 0.49 

Bulk Modulus 1.8 × 107 (Pa) 

Shear Modulus 3.6242 × 105 (Pa) 
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Here, we go over the fluid flow system and the equations for 

computational fluid dynamics. For CFD simulation, this study used 

ANSYS Fluent, a commercial finite volume tool. To connect to the 

finite volume approach, the simulation is separated into mechanism 

volumes. 

The conservation equation is given in (1). 

                                                                        (1) 

The control volume is denoted by 𝜌𝛋, the density by 𝜎, the diffusion 

coefficient by 𝜑, a variable fluid parameter, and the rate at which 𝜑 

increases as a result of sources by 𝑆𝜑. Given this, the volume 

integral of the diffusive and convective components, Gauss's 

divergence, is recast as and 

                                                                                               (2) 

The component of the vector "a" that is perpendicular to the surface 

element "a" is represented by the symbol " "𝑑𝐴"." In light of this, 

we may rewrite Equation (1) as follows: 

                                                                                                                         (3) 

 

Here, the terms symbolises the pace at which the 

overall volume of fluid is 

 

changing property. represents the overall rate at 

which the fluid element's property 𝜑 decreases as a result of 

convection. 

 

   is the overall pace at which the fluid properties of the fluid 

components are 

increasing as a result of diffusion. and      quantifies the rate of 

change in the property 𝜑 due to sources within the fluid element. 
 

Model of Multiphase Blood Flow  
 

Within the field of computational fluid dynamics (CFD), the 

study of multiphase flow is based on a well-established concept 
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(Kopernik and Tokarczyk 2019). As a result of this, the conclusion 

that plasma and RBC in blood should be regarded an abiotic 

multiphase medium was reached. A consistent value of one was 

maintained for the volume fraction (VF) of each phase for the whole 

of the model, as shown by Equation (3). 

                                                 (4) 

In this context, the symbol "𝜀" represents the volume fraction 

for each phase, whereas the terms "RBC" and "plasma" are defined 

over the products of the two phases, respectively. The multiphase 

mixture theory was used in order to conduct the analysis of the 

haemodynamic parameters (Mallik et al. 2013). This approach was 

chosen because, according to a prior piece of research, it is superior 

than the Euler-Euler model. 

Equation of Continuity for Multiphase Blood Flow  

The equations for continuity in the mixture theory model are as 

follows: 

 

 

 

 

 

where,  The mass-averaged velocity, mixture density, and 

haematocrit of phase 'k' are represented by and 𝜀𝑘, respectively 

(Jung et al 2006). In accordance with Equation (3), the total 

haematocrit for each phase must be reported as one. According to 

Equation (8), it follows that 
 

Slip and Drift Velocity 

The following equation defines the slip velocity as the ratio of the 

secondary phase's ('p') velocity to the main phase's ('q') velocity: 

Having said that, the mass fraction is expressed as 

 

are related to the following equation  
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the particle reduction time, denoted as '𝜏𝑝,'  is  

    

In this equation, 𝑑𝑝 represents secondary phase particle diameter, 𝑎→ 

represents their acceleration, and "fd" represents the fluid's drag force 

on spherical particles (Melka et al. 2013). An interphase drag theory 

for the two portions (multiphase) was used to account for fluid-driven 

stiff granular particle dragging. The Gidaspow equation was used to 

predict plasma-RBC drag to validate dense RBC distribution. The 

conventional drag force representation is: 

It is common practice to locate the coefficient of momentum transfers 

between the two phases, which is represented by the symbol CRBC , in 

the equation 

 

' 𝑑𝑴𝐵𝐎'  

represents the diameter of red blood cells (RBCs), known as 8 

µm in previous investigations, and the phase velocities of plasma and 

RBCs, respectively. Thin and thick particle drag coefficient formulas 

are typically employed with the Gidaspow model (Joisar et al. 2013). 

If 𝜀𝑅𝐵𝐎 is less than 0.2, then 𝐎𝐷 may be represented by an equation. 

in where the particle-modified Reynolds number is denoted as 𝑅𝑒𝑝 and 

The momentum exchange coefficient between phases ―𝐶𝑅𝐵𝐶‖ may 

be simply stated by the equation if "𝜀𝑖𝑵𝐎 > 0.2". 
 

Data analysis 

We used multiphase mixture theory to computationally 

simulate blood flow in the left coronary artery with multiple stenoses. 

Both rigid and flexible wall assumptions were used to quantify the 

patient's left coronary artery haemodynamic parameters (WSS, 

pressure, velocity, etc.). Examine and contrast the outcomes. As 

previously stated, the rigid and FSI left coronary artery models are 

assessed in this study. 
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Wall Pressure  

The pressure that is applied to the left coronary artery wall 

throughout the systolic and diastolic phases of the cardiac cycle is being 

examined using the rigid and FSI models. The 90% area stenosis 

showed the biggest decline in pressure when compared to other 

stenosis sites. Although the rigid and FSI models both achieved a 

maximum pressure drop of 100,077 Pa, both models' wall pressures 

varied slightly during the bifurcation. This applied to both models 

(Buradi and Mahalingam 2018). On the other hand, 10.784 Pa was the 

pressure drop across the stenosis that affected 80% of the area, whereas 

11,727 Pa was the pressure drop across the stenosis that affected 70% of 

the area. 

Analogously, the diastolic portion of the cardiac cycle was used 

to display the wall pressure for the left coronary artery CFD and FSI 

models. Compared to the LAD branch, which showed wall pressure 

drops of 30% and 80%, the LCX branch experienced the most loss of 

wall pressure throughout the 90% area stenosis. It is very clear how the 

two differ from one another (Wu et al. 2020). In both models, it was 

demonstrated that the pressure decreases to 8871 Pa over 90% of the 

stenotic area during the diastolic part of the cardiac cycle. The 

researchers confirmed and  validated this. The wall pressures produced 

by the rigid and FSI models did not differ significantly over the 

bifurcation zones.  
 

Shear Stress on the Wall (WSS) 

For both rigid and FSI models, WSS varies between the 

diastolic and systolic cardiac cycles. WSS rose by more than 90% in 

comparison to 70% and 80% of the stenosis region. In bifurcation 

sites, diastolic WSS was higher than systolic WSS. At 90% of the 

stenosis, the WSS was at its maximum between 40 and 50 Pa (Huang 

et al. 2009). The strength of the artery is determined by its wall shear 

stress, which might lead to an arterial rupture. The total WSS of the 

segmented left coronary artery is not significantly different between 

the CFD and FSI models. The fact that pressure waves move through 

the arteries more slowly in the arterial wall deformed model than in 

the CFD model with solid walls serves as evidence for this. 
 

Displacement 

Pressure on the left coronary artery wall in the FSI model 

induces wall displacement contours during systolic and diastolic 

cardiac cycles. Displacement was greatest during diastolic heart state, 

2.28-3.26 microns. The general left coronary artery model displays 

the most displacement in the pre-stenosis region (Bit and 

Chattopadhay 2018). Like the peak diastolic phase, the systole 

displacement zone has a modest maximum displacement of 0.33 to 

1.3 micron. 
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Velocity Streamlines 

Blood flow streamline velocity in the left coronary artery 

during diastolic and systolic cardiac cycles for rigid and FSI models! 

Over constricted parts, the left coronary artery flows faster. Over the 

stenosis zone, the FSI model had a substantially greater velocity than 

the rigid model. The rigid wall experienced velocities from 0.78 to 1 

m/s throughout the systolic cardiac cycle, whereas the FSI model 

experienced 0.45 to 0.9 m/s (Wu et al. 2018). The rigid model and FSI 

model attained their maximum velocities of 1.8 and 2.25 and 1.8 and 

2.26 m/s, respectively, during diastole. After stenosis, recirculation 

and bifurcation were visible. 
 

RBC Volume Fraction (VF) 

The two-phase mixture theory models for plasma and blood 

cells were typically processed with a 45% haematocrit concentration. 

The rigid model's (top) and the FSI model's (bottom) volumetric 

fraction counters of RBC are displayed during the systolic and 

diastolic phases of the cardiac cycle, as seen in plans 1–12. Cross-

sectional plans were projected along the normal, pre, mid, and post 

stenosis phases for 70%, 80%, and 90% of the stenosis region, 

respectively (Malek et al. 1999). The volume percentage of red blood 

cells (RBCs) rises during the peak diastolic phase of the cardiac cycle 

in comparison to the systolic section of the cardiac cycle. Although 

the volume fraction of red blood cells increases in the mid-stenosis 

and post-stenosis zones, it decreases in the pre-stenosis zone as the 

velocity increases. It was demonstrated that as the volume proportion 

of RBCs rose, the wall shear stress throughout the stenosis region 

increased significantly for both the rigid and FSI models. This was 

consistently the case. 

Results and Duscussion 

 According to this research, stenosis in the left coronary artery 

(LCA) can affect haemodynamic indicators in a variety of places. The 

simulation was performed in a patient- specific left coronary artery 

model using a two-way FSI approach. This approach considers the 

hard and flexible properties of the walls to ensure accurate results. The 

idea of a multiphase blood model that include plasma in addition to 

red blood cells is then covered. This study compares the results 

obtained in a solid walled environment with those obtained in an FSI 

model for the first time (Athani et al. 2021). While 70 to 80 percent of 

the left anterior descending (LAD) blood flow is stenotic, 

approximately 90 percent of the blood flow in the left circumflex 

(LCX) is blocked. The damage that endothelial cells, which line the 

inside of arteries, sustain is largely caused by local haemodynamic 

factors like WSS.  

For determining the WSS or any other haemodynamic 

variable, there is no non-invasive method. Recent advancements in 
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medical imaging techniques such as computed tomography (CT), 

magnetic resonance imaging (MRI), and intravascular ultrasound 

(IVUS) have made it possible to differentiate between the coronary 

artery wall and undesirable deposits; however, these techniques are 

still unable to detect areas of disrupted flow and oscillatory shear 

stress. Changes in the normal physiological value of WSS determine 

the beginning and course of atherosclerosis. The simulated results 

showed that the WSS was significantly higher than the healthy 

threshold (50 Pa) in cases with stenosis (Cameron et al. 2020). This 

was demonstrated by the presence of a disturbed flow zone across the 

bifurcations and post-stenotic zones.  

Conclusion 

A Non-Newtonian Power Law model accounted for blood's 

shear-thinning behaviour and the complex plasma-cellular interaction 

in our two-phase ocular blood flow research. Our technique represents 

retinal and choroidal blood flow dynamics more accurately and 

realistically by incorporating these components. The results 

demonstrate how blood's non- Newtonian properties considerably 

impact ocular microvascular system haemodynamic variables such 

pressure gradients, velocity profiles, and shear stress. As illustrated in 

this paper, blood's non-Newtonian and two-phase features must be 

considered when modelling ocular circulation. Tiny veins show these 

effects more. Our model better depicts eye tissue fluid dynamics, 

which may help explain aberrant blood flow-related eye diseases such 

macular degeneration, diabetic retinopathy, and glaucoma. The model 

also shows how blood viscosity and shear stress impact choroid and 

retinal feeding and oxygenation.  

Ocular haemodynamic modelling has improved since this 

study, although it might be better. For clinical usage, the model may 

need to be confirmed using experimental data from imaging 

technologies like OCT and Doppler ultrasonography. The model's 

real-time physiological data and patient-specific vascular geometries 

may also improve diagnosis and therapy. Finally, the two-phase non-

Newtonian Power Law model helps explain and simulate ocular blood 

flow. This approach may enhance clinical assessments, guide 

therapeutic treatments, and assist develop novel medicines for 

vascular dysfunction-related ocular illnesses by predicting the eye's 

haemodynamic behaviour more accurately. 
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